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Oscillatory motion in a side-heated cavity 

By S. G. SCHLADOWt 
Environmental Fluid Mechanics Laboratory, Department of Civil Engineering, 

Stanford University, Stanford, CA 94305-4020, USA 

(Received 28 March 1989 and in revised form 18 August 1989) 

Direct numerical simulations of the transient flow in a side-heated cavity have been 
conducted for a Rayleigh Number of 2 x log, an aspect ratio of 1 and a Prandtl 
Number of 7.1. The results show the presence of both long-period and short-period 
oscillations. The long-period oscillation is a cavity-scale mode produced by the tilting 
of the isotherms. The short-period oscillations are shown to be the result of two 
distinct boundary-layer instabilities. Whereas the latter oscillations can produce 
large deviations in the observed temperature records, they are relatively shortlived 
and have only a minor influence on the evolution of the flow towards steady state. 
The suggestion of the existence of an internal hydraulic jump in such flows has been 
investigated and found to be incorrect. 

1. Introduction 
Oscillatory motion in a cavity subjected to a temperature difference applied 

between two vertical sidewalls has been the subject of a number of studies. 
Oscillation superimposed on a steady convective flow has been addressed both 
experimentally (Hurle, Jakeman & Johnson 1974) and theoretically (Gill 1974) with 
the latter giving a feasible explanation of why oscillations should occur. When the 
underlying convective flow is unsteady, as would be the case in many natural flow 
situations, agreement as to the origins of the oscillation appears to have been more 
elusive. The flow regime that forms the focus of the present study is a case in point. 
Though certainly not the only regime in which oscillations would be present as part 
of the transient flow, it is interesting in that the oscillation timescale suggested by 
theoretical considerations is an order of magnitude larger than some of the 
oscillations observed to date. A brief chronology provides a background to the 
present study. 
* Patterson & Imberger (1980) suggested that rt cavity-scale internal seiche may be 
produced by the tilting of isotherms as the hot and cold intrusions ejected from the 
vertical wall boundary layers cross the cavity and then spread to match the 
entrainment towards the opposite vertical wall. The approach to steady state would 
then include a damped oscillation. (This is the large-timescale oscillation.) A set of 
experiments by Ivey (1984), designed to test this hypothesis, found no convicing 
evidence of regular cavity-scale oscillations. Temperature traces, however, clearly 
showed a short-period, large-amplitude oscillation for part of the time. The source of 
these oscillations was suggested to be ‘the inertia of the flow entering the interior of 
the cavity from the sidwall boundary layers, which may lead to a form of internal 
hydraulic jump . .. ’. Numerical simulations based on Ivey’s experiments were 
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conducted by Schladow, Patterson & Street (1989, henceforth referred to as SPS). 
These clearly showed the presence of the long-period oscillation ; however, there was 
virtually no evidence of short-period oscillations. The mechanism producing the 
oscillations was seen to be a combination of the isotherm tilting postulated by 
Patterson & Imberger, as well as tilting due to a simple ‘piling up’ of the intrusion 
fluid. Paolucci & Chenoweth (1989) also conducted numerical simulations based on 
Ivey’s experiments, and by contrast observed the short-period oscillations and not 
the long-period ones. They concurred with the hypothesis of the internal hydraulic 
jump producing the observed oscillations. Reference was also made to a further 
episode of oscillation at a relatively late stage in the transient ; however no data were 
presented to indicate its nature. 

This contribution seeks to reconcile the differences in the observations (both 
experimental and numerical) by proposing that both the long-period and the short- 
period oscillations exist as part of this regime. The former are of the type suggested 
by Patterson & Imberger (1980) and SPS. The latter, however, will be shown to be 
the result of two distinct instabilities in the vertical boundary layers rather than 
being associated with any kind of internal hydraulic jump. 

2. Problem description 
The system we consider is a closed, two-dimensional rectangular cavity as shown 

in figure 1. The upper and lower boundaries are insulated and a t  time t = 0 the right- 
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and left-hand walls are instantaneously heated and cooled respectively and thereafter 
maintained a t  constant temperature. The equations of mass, momentum (horizontal 
and vertical) and energy conservation which describe the ensuing motion and which 
are used as the basis of the discretized equations we later solve are 

where u and v are the velocity components in the x- and y-directions respectively, T 
is the temperature, p is the pressure deviation from that a t  hydrostatic equilibrium 
and v, p,  a and K are respectively the kinematic viscosity, density, coefficient of 
thermal expansion and thermal diffusivity of the fluid. The acceleration due to 
gravity is positive in the - y-direction. 

The Boussinesq assumption has not been invoked insofar as the effect of 
temperature on density and all other fluid properties has been explicitly retained in 
all terms of the above equation set. The temporal term in the mass conservation 
equation has, however, been neglected, as it was found to impair rapid convergence 
of the numerical scheme while having a negligible influence on the solution accuracy. 

(5) 

The initial conditions may be written as 

4 2 ,  y, 0) = v(2, y, 0) = 0, T(x, y, 0) = T,  
and the boundary conditions applied a t  t Z 0 may be written as 

I u(O,y,t) = u(Z, y , t )  = u(x,O,t) = U(X, h, t) = 0, 
V ( X ,  0, t )  = ~ ( 2 ,  h, t )  = ~ ( 0 ,  y, t )  = ~ ( l ,  y, t) = 0, 

T(O, y, t)  = T,- AT, T(Z, y, t )  = %+AT, 
aT/ay(x, 0, t )  = aT/ay(z, h, t )  = 0, 

where h and 1 are the cavity height and length respectively. 

the Prandtl number (r, and the aspect ratio A .  These are defined as 
The flow is a function of three dimensionless parameters : the Rayleigh number Ra, 

Ra = 2gaATh3/v~, (7) 

(r = V / K ,  (8) 

and A = h/l. (9) 

For the case o f a  shallow cavity ( A  Q 1)  with a Prandtl number greater than unity 
(a  > 1 )  and satisfying the condition A-6 < cr, Patterson (1984) showed there were six 
possible flow regimes, each demarcated by a critical value ofRa. We consider Regime 
V, which lies in the Rayleigh-number range do < Ra < a16A-". In  particular we 
adopt the case of a square cavity, with h = 1 = 0.24 m, and initial temperature To = 
20 "C and a temperature difference A T  = 5 "C. Water is the assumed working fluid 
with a Prandtl number a t  20 "C of 7.1. The Rayleigh number is 2 x lo9. These values 
nominally coincide with those used by Ivey (1984). The flow regime and parameter 
values considered could conceivably be realized in the growth of crystals from 
aqueous solutions using horizontal growth techniques. Similar processes could also be 
expected with different values of aspect ratio and Prandtl number (Patterson 1984) 
thus making the processes of considerable practical interest. 
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3. Previous work 
Some of the previous work relating to transient flows in side-heated cavities has 

already been alluded to in the Introduction. This will now be enlarged upon. 
The scaling analysis of Patterson & Imberger (1980) was the first attempt to 

quantitatively describe and classify the transient flows in shallow, side-heated 
cavities, Their numerical solution of the flow equations confirmed the scaling results 
in the low-Ra regimes. The numerical results of Gresho et al. (1980) also provided 
independent corroboration of many of the results, including the existence of a long- 
period internal wave mode. Although the higher-Ra regimes were not solved 
numerically, the mechanism of internal wave production was the same for the lower- 
and higher-Ra regimes, and consequently it was believed that similar oscillations 
would exist. 

The scaling analysis for the higher-Ra regimes (for example Regime V) suggests the 
following transient flow evolution for the present parameters. Immediately after 
the temperature difference is imposed, a double-layer structure starts to form on the 
vertical walls. The timescale for its growth is O(10 a), with the lengthscales for 
the outer viscous layer and the inner thermal layer being approximately 3 mm and 
1 mm respectively. As the flow along a vertical wall approaches a corner, it is forced 
to discharge into the core of the cavity. Heated (cooled) fluid then intrudes as a 
relatively fast moving layer across the top (bottom) of the cavity. The mass flux 
associated with each intrusion is supported by entrainment into the vertical 
boundary layer along its entire length. As an intrusion approaches the opposite side 
of the cavity it spreads to match the entrainment demand and in so doing its 
isotherms are tilted (with a positive slope) beyond the horizontal. The horizontal 
pressure gradient produced induces a cavity-scale internal wave (seiche) in the 
stratified portion of the cavity, resulting in the oscillation of the isotherm slope about 
the vertical centreline of the cavity. Eventually the seiche decays. As the flow 
continues there is a gradual filling of the core with a stable vertical temperature 
gradient, until a steady state is achieved. 

This regime was first examined experimentally by Ivey (1984). As noted 
previously, the experiments confirmed much of this description, but differed in two 
major regards. First, they showed no evidence of the long-period internal wave. The 
data on which this conclusion was drawn, however, were limited to temperature 
traces from three thermistor probes located close to the top of the cavity. These are 
shown as points 1,  2 and 5 in figure 1. The presence of a temperature inversion and 
a complex recirculating region near the top of the hot wall, as shown by SPS, make 
the observation of such a wave by thermometry at these points virtually impossible. 
In comparison, by calculating the heat flux across the vertical centreline of the 
cavity (where the horizontal velocity would have a very pronounced oscillatory signal 
in the presence of a seiche) SPS showed clearly and unambiguously the existence of 
a decaying seiche with a period of 60-70 s, close to the predicted period. 

Second, the experimental thermistor traces did display a short-period oscillation 
with a period of approximately 5-6 s and peak-to-peak amplitude of - 0.4AT. This 
amplitude is several times larger than the seiche amplitude produced by SPS. The 
existence of these oscillations cannot be disputed ; however, the mechanism for their 
production could only be guessed at by Ivey. His suggestion of an ‘internal hydraulic 
jump ’ (the previously referred to ‘complex recirculating zone ’) as the probable 
source of these fluctuations, was based on an order of magnitude calculation. Similar 
flow features have been open to different interpretation by other investigators (see 
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for example Worster & Leitch 1985). The SPS simulations showed almost no trace of 
these short-period oscillations although a flow structure of similar appearance was 
present near the top of the hot wall. Calculations based on the numerical results 
suggested that the internal Froude number, F ,  just upstream of the ‘jump ’ location 
was in the range 0.7-1.5 indicating that, if indeed a hydraulic jump existed (F > l),  
it would be undular (1.0 < F < 1.7) and take the form of smooth standing waves with 
small energy losses. 

The recent simulation by Paolucci & Chenoweth (1989) agrees with the experiment 
in that short-period oscillations are observed while long-period oscillations are not. 
The latter point is readily explained in that the evidence for a long-period oscillation 
was sought only a t  the measurement points used in the experiments, and the 
numerical results therefore have the same shortcoming as the experiments. Paolucci 
& Chenoweth’s failure to observe a seiche under other flow conditions may be 
attributable to the initial conditions employed in the simulations. Rather than using 
an isothermal state, these conditions consisted of the steady-state temperature fields 
of lower-Ra flows. The detrainment that occurs from a boundary layer when the 
ambient is stratified (Gill 1966) serves to weaken the intrusion flows a t  the top and 
bottom of the cavity, and the smaller entrainment length reduces the propensity for 
the isotherms to tilt. This latter effect is reinforced by the presence of the vertical 
density gradient, which generally suppresses the ‘piling up ’ of the intrusions 
(Schladow & Street 1988). 

The observation of the short-period oscillation by Paolucci & Chenoweth clearly is 
a t  odds with SPS. As will be shown in the subsequent sections, the failure of the SPS 
simulation to resolve these small-scale features is due to numerical diffusion. 
However, the diffusion’s effect on the large-scale features which were the focus of 
that study was very slight. The observation of these oscillations, however, does little 
to advance our understanding of their cause. Although Paolucci & Chenoweth agree 
with Ivey’s hydraulic jump mechanism, the value of the Froude number they report 
is 0.63, well below the limit for a hydraulic jump. Their results did, however, suggest 
that the oscillations were stronger near the emergent corners than away from them. 
In view of the low Froude number, the most likely place to look for the source of 
these oscillations is, therefore, the region of flow generation, namely, the vertical 
boundary layers. 

A t  high Rayleigh numbers the boundary layers are thin compared to the cavity 
dimension and so the vertical boundaries can be thought of as existing in an 
extensive medium ( 1  --z GO).  (This assumption was central to the earlier scaling 
analysis by Patterson & Imberger 1980.) Employing the usual boundary-layer 
approximations, together with the Boussinesq approximation, one can readily show 
that the equation set (1)-(4) reduces to the following set in the vicinity of the hot 
wall : 

au/ax+av/aY = 0, (10) 

au/at+ uau/ax+ vaupy = Va2U/ay2+p(T-%) ,  

aT /a t+  U a T / a X +  VaT/aY = tca2T/ay2. 

(11) 

(12) 

As shown in figure 1, the X- and Y-axes in these equations are not the same as those 
used to describe the whole cavity flow. These transformed axes are adopted primarily 
to conform with the conventions of the boundary-layer literature. Similarly, reference 
will also be made to the Grashof number, Gr = Ra/cr. U and V are the velocity 
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components in the X- and Y-directions, respectively. The appropriate initial and 
boundary conditions are 

U ( X ,  Y ,  0) = V(X,  Y, 0) = 0, T ( X ,  Y ,  0) = T, 
U(0,  Y, t )  = V ( 0 ,  Y ,  t )  = 0, U ( X ,  0, t )  = V ( X ,  0, t )  = 0, 

T(0, Y ,  t )  = T,, T(X, 0, t )  = T,+ AT, 
T ( X ,  00, t )  = T,, U ( X ,  00, t )  = 0. 

(13) 

and } (14) 

These are the same equations that apply to the well-studied problem of a semi- 
infinite heated plate ; hence many of the results that apply to it may be expected to 
have application to our problem. However, as the flow proceeds, the boundary 
conditions as Y + 00 will diverge from the above as the effects of the internal nature 
of the flow become felt. 

No analytical solution exists for the temporal behaviour of a laminar flow past a 
semi-infinite plate following a step change in temperature. Following Brown & Riley 
(1973), it can be considered as occurring in a number of stages. Initially, the heat 
transfer from the wall to the fluid is purely by conduction and, hence, a one- 
dimensional solution describes the flow. This abruptly ends with the passage of the 
'leading edge ' influences, followed by an asymptotic approach to  the classical 
steady-state flow. At some distance downstream (corresponding to a sufficiently high 
Grashof number) the laminar boundary layer becomes unstable to disturbances in 
the flow. These disturbances amplify and eventually through nonlinear interactions 
may result first in a transitional flow and eventually in a fully developed turbulent 
flow. Depending on the flow conditions, the boundary layer may relaminarize a t  its 
fully developed state or may remain turbulent (Mollendorf & Gebhart 1970). 

The initial phase is a consequence of the fact that sufficiently far from the leading 
edge, the fluid acts as if the plate was doubly infinite, with a velocity distribution 
independent of X (Siege1 1958). Hence the convective heat transfer is zero and the 
velocity is a function of time and distance from the heated boudary. The two- 
dimensional influence which causes the boundary layer growth to vary with X 
propagates away from the leading edge. The beginning of convective heat transfer a t  
a particular X commences only after this leading-edge influence has reached that 
point, after being advected along the boundary layer by the fastest moving fluid. 
Goldstein & Briggs (1964) present solutions for predicting when the leading-edge 
effect will penetrate a given distance X,, based on the velocity and temperature fields 
along a doubly infinite plate. For CT > 1, their solutions for the one-dimensional 
temperature and velocity fields and for the penetration distance are 

(15) T = (T, + AT) erfc 4, 

4 9 a ( ~  + "1 [ i 2  erfc 5- i 2  erfc , " 1  U =  
CT-1 

where 6 = Y / ( 4 ~ t ) " ~  is the dimensionless Y-coordinate and Perfc" is the nth 
integral of erfcc. The penetration distance, X,, was maximized over Y, a t  a given 
t, such that X, = max[J;U(Y,t)dt]. By contrast, Brown & Riley (1973) give 
Xp = j h  {max [V( Y ,  t)] dt} which yields a propagation rate that  is only slightly faster 
than that of Goldstein & Briggs. A number of numerical results have shown 
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departures from the one-dimensional solution earlier than either of these formula- 
tions suggest (Ingham 1978, for example). I n  addition, Ingham (1978, 1985) 
demonstrates the discontinuous nature of the transition from the one-dimensional to 
the steady solution. Direct measurements by Joshi & Gebhart (1987) confirm that 
the 'leading edge ' effect arrives abruptly and somewhat earlier than indicated by 
(17). For wall lengths commensurate with our cavity dimensions, its manifestation 
took the form of a sinusoidal disturbance to both the temperature and velocity fields, 
which when measured a t  a point had a duration of 2-3 periods. 

The laminar, steady-state solutions for temperature and velocity adjacent to a 
semi-infinite heated plate was obtained numerically by Ostrach (1952), using 
similarity techniques. I n  terms of the similarity variable q = (aGr,); Y / X ,  where the 
Grashof number Gr, = gaATX3/v2, i t  was shown that 

T-To = H ( 7 ) .  
AT 

Values of F and H were tabulated for different values of CT. The good agreement 
between these solutions and experimental data is summarized by Ede (1967). 

The development of disturbances in boundary-layer flows has been the subject of 
a large body of work. Much of this is summarized in reviews by Gebhart (1973) and 
Gebhart & Mahajan (1982), and will only briefly be described here. Using linear 
stability analyses, values of G, the modified Grashof number, as a function of SZ, a 
generalized frequency, can be found for the case of neutral stability. Contours of 
constant amplification rate in the unstable region can also be readily determined. For 
the case of a step change in boundary temperature, 

(2x f )  6Gf S Z =  
UC 

and G = 4(aGr,)f. (21) 

The characteristic base flow velocity, U,, and characteristic boundary-layer 
thickness, 6, are given by 

(22) -- 'ex - aG2 
V 

and 
4x a=-- 
G 

respectively, and f is the disturbance frequency. 
The analyses show that the flows are highly selective in their amplification 

characteristics. A wide-band disturbance is band-pass filtered for a very narrow 
frequency band as i t  is convected downstream. This frequency ba.nd coincides with 
the most rapidly amplified frequencies. A single-frequency disturbance is either 
poorly amplified if i t  is away from this band (but still within the unstable region) or 
strongly amplified if close to it. Experimental results strongly support this notion of 
selectivity in amplification and consistently show nearly sinusoidal disturbances 
being advected downstream by the boundary-layer flow. This applies to both 
initially steady flows that are artificially perturbed (Jaluria & Gebhart 1973) and to 
the early stages of transient flow referred to  earlier. Although most experiments have 
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been conducted for the experimentally more convenient arrangement of a constant- 
heat-flux surface, the exact nature of the base flow is not an important determinant 
of the disturbance characteristics and this description may be considered as basically 
correct for the isothermal case too (Gebhart 1969). 

The continued development of the flow through transition and finally to turbulence 
will not be reviewed. The usual criteria for the observation of these states - higher- 
frequency components superimposed on the laminar filtered frequency, and 
departures from the laminar temperature and velocity profiles (Gebhart & Mahajan 
1982) - were not observed in the present study, as will be shown below. Furthermore, 
the particle track photographs from Ivey (1984) all show smooth pathlines, strongly 
suggestive of laminar flow throughout the transient. (These may be contrasted with 
those of Joshi & Gebhart (1987), where far more erratic pathlines are present during 
transition and turbulence.) The thermistor traces produced by Ivey, though 
containing a 5-6 s oscillation, do not suggest a turbulent flow. 

4. Numerical procedures 
All numerical results to be presented were obtained using the SEAFLOS~ code. A 

complete description of i t  is given by Perng & Street (1989). The code solves the 
finite-differenced forms of equations (1)-(4) on a spatially non-uniform grid in two 
dimensions. Though having its origins in the SIMPLE algorithm (Patankar 1980), 
SEAFLOS 1 differs in some fundamental respects. These differences relate primarily to 
the use of quadratic upstream interpolation (the QUICK algorithm; see Leonard 1979) 
for the convective terms and a conjugate gradient scheme for the solution of an exact 
pressure equation. Whereas the version of SEAFLOS~ used by SPS advanced in time 
by using a first-order-accurate implicit Euler scheme, time advancement is now by 
an explicit, second-order predictor-corrector scheme. 

Consideration was given to solving the equations in three spatial dimensions, as 
had been done by SPS. However, their results suggested that three-dimensional 
effects a t  the cavity-scale level only became apparent for times much larger than 
those that are the focus of the present paper. As the results to be presented agree 
sufficiently well with observations (both for cavities and vertical plates) and bearing 
in mind that the computational cost of a three-dimensional simulation would be 
high, the decision to  proceed with only two-dimensional simulations appears to be 
a posteriori justified. 

In seeking to  perform time-accurate simulations of a transient flow, the 
minimization of artificial viscosity is a major consideration. An estimate of i t  can 
readily be obtained by first representing a model continuum equation in finite- 
difference form and then expanding in a Taylor series the terms of this finite- 
difference equation (Hirt 1968). This generates a second continuum equation which, 
when compared to the model equation, reveals the artificial viscosity induced by the 
particular differencing scheme chosen. For this purpose i t  is sufficient to use the 
unsteady advection4iffusion equation, a$/at = - u a$/ax + D a2$/ax2,  as a model 
equation. Here, $ is the variable to be solved for, D is the ‘natural viscosity’ 
coefficient (kinematic viscosity if $ is a velocity component) and the other terms are 
as defined previously. Table 1 lists the generated continuum equations for a number 
of possible differencing schemes. The spatial difference schemes considered are 
central differencing (CD), conventional upwind differencing (UD) and quadratic 
upwind differencing (QD), while the temporal schemes are explicit Euler (EE), 
implicit Euler (IE) and predictor-corrector (PC). The terms At and Ax are the 
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Algorithm Continuum equation 

a4 a4 a24 
at ax ax2 

CD+EE -= -u-+ (V-b2At)-  

34 CD+IE -= ” -u-+(v++u2At)- 
at ax ax2 

TABLE I .  Generated continuum equations for particular algorithms. CD = central differencing ; 
UD = upwind differencing ; QD = quadratic upstream differencing ; EE = explicit (forward) Euler ; 
IE = implicit (backward) Euler ; PC = predictor-corrector. 

Corner Wall 

Mesh Algorithm At Ax Vel D I D  Ax Vel D I D  

50x50 QD+IE 1.0 0.001 0.001 0.5 0.009 0.01 50 
50x50 QD+PC 0.02 0.001 0.001 0.04 0.009 0.01 0.0005 
90x90 QD+IE 0.25 0.0004 0.001 0.1 0.005 0.01 12 
90 x90 QD+PC 0.005 0.0004 0.001 0.06 0.005 0.01 0.0004 

130x 130 QD+PC 0.005 0.0004 0.001 0.06 0.002 0.01 0.002 

TABLE 2. Ratio of numerical viscosity to ‘natural’ viscosity, D I D ,  adjacent to the vertical wall and 
in a corner region. The value of D corresponds to the kinematic viscosity of water at 20 “C. At is 
the timestep ( 8 )  ; Ax is the mesh size (m) ; Vel is a typical velocity (ms-’). 

temporal and spatial step sizes used in the finite-difference formulations. Of the 
spatial differencing methods, neither CD nor QD generates artificial viscosity. 
Conventional UD does make a contribution, as evidenced by the additional 
coefficients of the second derivative term. All of the temporal differencing methods 
have an artificial viscosity component. However, the contribution associated with 
the PC scheme is far smaller for the conditions pertaining to our problem. This can 
be seen in table 2, where the ratio of the artificial viscosity term to the ‘natural’ 
viscosity term, D’/D, for the PC and the IE schemes is compared for a number of 
meshes and time steps. Estimates are provided for the wall and the corner regions, 
as these regions are the most critical in terms of describing the flow, and significantly 
different velocities and mesh sizes pertain to each of these regions. The Ax used for 
each case is the mesh size half-way up the vertical wall (in the case of the wall region) 
and the mesh size approximately 0.01h from the corner (for the corner region). The 
maximum and minimum velocities are order of magnitude estimates for the wall and 
corner regions. 
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FIQURE 2. Profiles of vertical velocity normal to the midpoint of the cold boundary at  t = 20 8.  

It is clear from table 2 that the predictor-corrector scheme produces the smaller 
values of artificial viscosity for both regions. The corner values are somewhat higher 
than those along the wall; however, they are still negligible. The implicit Euler 
scheme, by contrast, produces its larger values (for a particular At) in the regions of 
highest velocity, i.e. a t  locations adjacent to the vertical wall. The estimated values 
are actually larger than the ‘natural ’ viscosity. 

The implications of this result are potentially significant, considering that it is just 
this scheme that was used by SPS. If the velocity were predominantly along the 
boundary (as would be the case in a boundary layer) and generally unperturbed, the 
effect of the higher viscosity would still be negligible, as the a2$/ax2 term itself would 
be very small, i.e. flow is dominated by the advection terms. Therefore, even with the 
relatively high level of artificial diffusivity in this region, the effect would be minor. 
This was the argument advanced by SPS. The soundness of the argument is made 
evident in figure 2, where velocity profiles adjacent to the midheight of the cold 
boundary are shown at t = 20 s for four of the cases considered in table 2.  The profiles 
of both explicit cases and the 90x90  implicit case are coincident, indicating the 
negligible effect of longitudinal diffusion. If, however, the boundary layer were 
subject to small perturbations, the locally high value of the a2$/az2 term in the 
region of the disturbance would lend significance to the viscous term. One would, as 
a consequence, expect that these disturbances would suffer damping. Thus, any 
effect of such perturbations would be lost to a simulation using the implicit Euler 
scheme. 

In  order to be sure that perturbations in the vertical boundaries could be resolved, 
a comparison was conducted between a 130 x 130 mesh and a 90 x 90 mesh, both 
using the explicit predictor-corrector time advancement. The 130 x 130 mesh had the 
same number of points as the 90 x 90 code in the vicinity of the boundaries (7 points 
within the thermal boundary-layer thickness and 11 points within the viscous 
boundary layer thickness), but up to double the points away from the boundaries. In  
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this way the mesh spacing along the vertical boundaries (the y-direction) was 
increased, especially near the midheight. As the perturbations were believed to be of 
a similar size to the boundary-layer thicknesses, the resolution normal to the vertical 
boundaries (the 2-direction) was considered ample. Virtually no difference in the 
flows was observed for the time sequence 0-40 s when both codes were run. This 
includes a period during which boundary-layer perturbations do exist. Figure 2 
shows the close agreement between the velocity profiles adjacent to the cold wall at  
t = 20 s for each of the meshes. As a consequence, the extension of the numerical 
results to 400 s was only done for the 90 x 90 explicit code, and all the results that 
follow were taken from the resulting data set. All runs were conducted at the San 
Diego Supercomputer Center, using a Cray X/MP. Typical CPU time for a timestep 
with the 90 x 90 mesh was 1.6 s. 

5. Results 
5.1. Boundary layers 

The results that follow are from the boundary layer adjacent to the heated wall. 
However, similar results were also observed a t  corresponding times and positions 
adjacent to the cooled wall. Traces of temperature and vertical velocity against time 
are shown in figures 3 and 4 a t  five points with fixed values of the similarity variable, 
y (defined just prior to (18)). I n  figure 3,y = 0.3 and in figure 4 , y  = 0.8. It is evident 
from successive curves on both figures that there are indeed oscillations present in 
the boundaries and that they are progressively amplified. Their origins, however, are 
not so evident. 

The first packet of oscillations on each curve correspond to the 'leading-edge' 
effect. The rapid buildup of velocity and temperature just prior to this event is 
consistent with (15) and (16). For example, the top curve in all the figures is the one- 
dimensional solution for the points a t  X / h  = 0.8. Further, the extent to which the 
individual curves overlay each other prior to the arrival of the disturbance confirms 
the underlying assumption that the response is one-dimensional at  that time. The 
time a t  which the penetration distance, X,, was calculated to have reached each 
point is also plotted as a solid circle on each curve. In  all cases it can be seen that the 
calculated time from (17) was longer than the time a t  which the numerical results 
first separated from the one-dimensional response, a result similar to the experi- 
mental results of Joshi & Gebhart (1987) and the numerical results of Ingham (1978). 

The oscillations themselves also agree with much of the previous literature. Their 
effect on the temperature and velocity fields is identical to that found by Joshi & 
Gebhart (1987) and they conform to the postulated discontinuity between the one- 
dimensional and steady solutions (Brown & Riley 1973; Ingham 1985). There is a 
distinct selective amplification, with the preferred period being typically 6 s. In their 
figure 5 ,  Gebhart & Mahajan (1982) have assembled data from a number of heated- 
plate experiments. For cr = 7.1, the figure shows a generalized frequency Q of 0.25 
being the most rapidly amplified. Using (20)-(23) with a temperature difference of 
5 "C applied a t  the wall, this IR-value is readily shown to correspond to a disturbance 
frequency, f, of approximately 0.18 Hz, or a period of 5.6 s. For a point midway up 
the wall, the numerical results show the periods to be generally in the range 5.1-6.0 s, 
although a t  the front of the packet the period tends to be stretched (to as long as 
8.7 9). The temperature disturbance propagates first, with horizontal velocity 
component, vertical velocity component and vorticity having approximate phase 
lags of 2.0, 0.8 and 0.5 s respectively. 
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FIGURE 3. Time traces of dimensionless temperature and vertical velocity component at five points 
with 7 = 0.3. From the bottom, the points are a t  ( z / h ,  y/h)-coordinate values (0.9979,0.1), (0.9975, 
0.2), (0.9971,0.4), (0.9967,0.6) and (0.9965,0.8). The top curve is the one-dimensional solution for 
(0.9965,0.8). The solid circle (0)  represents the calculated arrival time of the leading-edge effect. 
The other symbols at  t = 60, 140 and 340 s are the steady-state values at  each of the above 
coordinates. (a) (T-T,)/AT against time. The ordinate scale refers to the lowest trace and its 
steady-state value. Traces for successive points are staggered by 0.05, 0.15, 0.25 and 0.35 
respectively. (b) Vertical velocity component, v, against time. 
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FIGURE 4. Time traces of dimensionless temperature and vertical velocity component at five points 
with 7 = 0.8. From the bottom, the points are at ( z / h ,  y/h)-coordinate values (0.9945,O. l) ,  (0.9934, 
0.2), (0.9921,0.4), (0.9913,0.6) and (0.9907,0.8). The top curve is the one-dimensional solution for 
(0.9907,0.8). The solid circle (0 )  represents the calculated arrival time of the leading-edge effect. 
The other symbols at t = 60, 140 and 340 s are the steady-state values at each of the above 
coordinates. (a) (T-T,)/AT against time. The ordinate scale refers to the lowest trace and its 
steady-state value. Traces for successive points are staggered by 0.05, 0.15, 0.25 and 0.35 
respectively. (b) Vertical velocity component, v ,  against time. 
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As well as the increase in disturbance amplitude along a constant-7 line, the 
disturbance size also varies with 7.  For example, the amplitude of the temperature 
disturbances due to the 'leading-edge' effect at X / h  = 0.8 in figures 3(a)  and 4(a)  
corresponds to temperature fluctuations of 0.25 and 0.5 "C respectively. A similar 
increase in vertical velocity component can also be seen in figures 3(b) and 4(b). The 
symbols shown a t  t = 60, 140 and 340 s in figures 3 and 4 are the steady-state values 
of velocity and temperature calculated from (18) and (19), using interpolation of 
Ostrach's (1955) tabulated data for F' and H .  For 7 = 0.3, the interpolation 
equations used were 

F = 0.0861(a/10)-0.2545, H = 0 . 6 5 3 4 ( ~ ~ / 1 0 ) - ~ . ~ ~ ~ ~ ,  

and for 7 = 0.8 they were 

F' = 0.1 137(410)-0.35s3, H = 0 . 2 4 0 6 ( ~ ~ / 1 0 ) - ~ ~ ~ ~ ~ ~ .  

While the steady-state velocity increases along a constant-q line, the steady-state 
temperature remains constant. (Note that the curves in figures 3 ( n )  and 4(a) are 
staggered.) It is clear from the figures that soon after the passage of the 'leading- 
edge ' disturbance the steady-state values are approximated very well. 

The second packet of oscillations on each of the curves has virtually identical 
frequency, phase and amplification characteristics to the ' leading-edge ' dis- 
turbances. They are, however, up to a factor of 5 larger in amplitude. The 
temperature amplitude, for example, on figure 4(a) is as high as 2 "C (equivalent to 
0.4AT). The cause, however, is not immediately apparent. Clearly, it is an isolated 
event -there are no other similar disturbances following it (at least not for the time 
span simulated). Furthermore, i t  appears to develop in a similar way to the first 
disturbance. That is to say, i t  originates near the base of the boundary and then 
amplifies in a narrow frequency band as it propagates up the boundary. This would 
imply that i t  does not represent a breakdown of the laminar boundary layer due to 
a transition to turbulence a t  some point where the Grashof number was sufficiently 
high. Instead it would appear that the boundary layer has again been perturbed in 
some way. 

Following the passage of this second disturbance, the temperature and velocity 
traces start to diverge from the steady-state values. This is a direct result of the 
enclosed nature of the cavity starting to affect the flow. As a consequence the 
assumption of a semi-infinite plate no longer holds true. In  the context of the cavity 
flow, however, two important results have emerged from detailed consideration of 
the vertical boundary layer. First, the two sets of oscillations in the boundary layer 
both produce frequencies that agree very closely with the high-frequency oscillations 
measured by Ivey (1984). Second, the amplitude of these oscillations, particularly 
those from the second disturbance also agree with the amplitudes measured by Ivey. 
The origin of only the first of these events can be accounted for by the flat-plate 
analysis, although the characteristics of the second are very similar. It will be 
necessary to consider the flow in the entire cavity to arrive a t  the cause of the second 
set. 

5.2. Cavity $ow 
The cavity flow results produced as part of the present study confirm all the large- 
scale flow features reported in SPS. Where the results differ is that a number of small- 
scale features are now observable in the flow. Overall these do not appear to change 
the flow ; however, there are pronounced local differences, particularly in the early 
stages of t'he flow. For a detailed description of the large-scale flow features the 
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reader is referred to SPS. The present cavity flow results will be used to consider 
three other aspects. These are the causes of the second set of short-period oscillations, 
the cavity-scale nature of the long-period oscillations, and the nature of the 
‘hydraulic jump ’ feature. 

5.3. Short-period oscillations 

A series of pathline plots (beginning with figure 5a) are used. The pathlines are the 
traces of ‘particles’ positioned a t  time t = 0 a t  every 8th mesh point. The points 
chosen on a particular row are displaced from those on the previous row by one mesh 
point (giving the impression of curved mesh lines). Although the computational 
timestep is 0.005 s, the ‘particle ’ positions are upgraded only every 1 s by integrating 
the calculated velocity field a t  that instant. The dots on the figures are the particle 
positions at the beginning of the 10 s time span indicated. Temperature contours at 
the end of the time spans are also presented (beginning with figure 5b). The 
maximum and minimum contour values shown are 24.6 “C and 15.4 “C, and the 
interval between contours is 0.4 “C. Three of the four pairs of plots presented in 
figure 5 are a t  identical times to plots in figure 4 of SPS, allowing a comparison 
between the two solutions. 

In figure 5 ( a ) ,  the pathlines show the high velocities up the hot (down the cold) 
boundary and the intrusions these produce across the top (bottom) of the cavity. The 
flow in the core of the cavity is dominated by entrainment into the vertical boundary 
layer and into the intrusions. The temperature contours in figure 5(b) support this 
description. They differ from the corresponding plot in SPS only in so much as the 
head of the intrusion appears to be defined in more detail here. Neither plot discerns 
the presence of the ‘leading-edge’ instability in the vertical boundary layers, as the 
perturbation amplitudes are too small. 

Twenty seconds later, in figures 5 ( c )  and 5 ( d ) ,  the top intrusion has just reached 
the opposite side of the cavity, and the ‘piling up’ of the intrusion fluid has 
commenced. This effect seems to be far more pronounced than the isotherm tilting 
due to entrainment into the cold wall boundary layer. However, the most important 
feature in figure 5 ( d )  is the distortion to the vertical boundary layer caused by the 
‘impact ’ of the warm intrusion. The timing of this impact and of a similar one when 
the cool intrusion reaches the hot wall coincides exactly with the commencement of 
the second instability in the boundary layer. By considering the impact as a broad- 
band disturbance in a Fourier sense, it can be inferred that the same narrow- 
frequency band would be selectively amplified as with the leading-edge instability. 
Unlike that instability, however, the initial disturbance amplitude is relatively large, 
allowing for far greater amplitudes to be produced as the disturbance is convected 
along the boundary layer. Thus, it appears that the most immediate effect of the 
enclosed nature of the cavity on the boundary-layer flow is a far larger and more 
sudden one than would at first be expected. The disturbance in the vertical boundary 
layers is very noticeable a further twenty seconds on. Though it is not perceptible in 
the pathline plot of figure 5(e) (owing to the relatively small magnitude of the 
velocity component normal to the vertical boundary), it is very evident in 
the temperature contours of figure 5 ( f ) .  Finally by time t = 130 s in figure 5(h)  the 
disturbances in the boundary layers have been advected away and are now a part of 
the intrusions. This agrees with the results of figures 3 and 4. 

20 F1.M 213 
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FIGURE 5 (a-d). For caption see facing page. 

5.4. Long-period oscillations 
The cavity-scale, long-period oscillations also commence with the arrival of the 
intrusions at the opposite side of the cavity and their subsequent ‘piling up ’. Within 
the head of the intrusions, flow reversals can be seen in figure 5(e )  as the fluid 
commences to fall back. Compared to figure 5(c ) ,  velocities in the main body of the 
intrusions are noticeably smalIer. The temperature contours in the intrusions 
(particularly the warm one) suggest the beginning of the collapse, as the isotherms 
commence tilting in the opposite direction in figure 5 ( f ) .  In  figure 5(g ) ,  the flow a t  
the full extent of the collapse can be seen. Reversed flow exists along the full length 
of the intrusions. The temperature structure in figure 5(h)  is showing an ever mope 
complex temperature field, as the flow accommodates to the return flow in one 
direction and the continuing flux of boundary-layer fluid in the opposite. A t  later 
times, however, the growing complexity of the flow makes it difficult to know from 
just the inspection of the pathlines whether this is indeed a sustained, cavity-wide 
phenomenon. 

A frequently used method for addressing such questions is to compute the energy 
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FIQURE 5. Evolution of the transient flow. Pathlines are for the time intervals (a) 40-50 s; (c )  
60-70 s; (e) 80-90 s; (9) 120-130 s. Temperature contours are for (b)  50 s ;  ( d )  70 s; (f) 90 s; (h) 
130 s. Left wall is at 15 "C and right wall is at 25 "C. Dots on pathline plots are position of 'particle' 
at beginning of time span. Values shown on contour plots are in O C .  Isotherms are at 0.4OC 
intervals. 

spectrum of a time series record of temperature or velocity at a point, and to identify 
the high-energy peaks. Such time series records were stored for the 17 points shown 
in figure 1. Inspection of the data showed that, for the period simulated, they were 
non-stationary in that at each point the record had a time-varying mean value, mean 
square value and frequency structure. Aa a result standard methods of time series 
analysis could not be used. An alternative approach to answering the question, while 
at the same time obtaining information about the evolution of the flow elsewhere in 
the cavity, is to use a simple type of interferogram. 

Figure 6 is a set of profiles of the horizontal velocity component, u, midway across 
the cavity (x/h = 0.5). Each profile is 4 s apart, with the first at  t = 2 s and the last 
at t = 398 s. Individual profiles have been staggered by 0.24 cm/s. The length of the 
box enclosing the figure corresponds to 2.5 cm/s, while the height corresponds to the 

20.2 
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FIGURE 6. Profiles of the horizontal velocity component, u, a t  the vertical centreline of the cavity 
(x/h = 0.5). The profiles are at 4 s intervals, commencing with the profile a t  t = 2 s and ending with 
the profile a t  t = 398 s. Each profile is offset from the previous by 0.024 cm/s. The box length 
corresponds to 2.5 cm/s. The box height corresponds to the cavity height h = 0.24 m. 

full cavity height, h. The purpose of this figure is not to elicit information about any 
individual profile (a difficult task in the early stages where profiles tend to overlay 
each other) but to provide a pattern of the entire flow history. Considering just the 
upper part of the figure (the warm intrusion) it can be recognized that the dark bands 
are due to  the acceleration of the flow within the intrusion. The first (and largest) 
such event corresponds to the initial passage of the intrusion. Thereafter, it  occurs 
on five occasions, each with progressively diminishing intensity. These commence at 
approximately 150,210, 280, 330 and 390 s. These events represent successive cycles 
of the whole cavity wave. Flow reversals a t  the top of the intrusion only occur after 
the passage of the initial intrusion (as shown in figure 5g).  Flow reversals immediately 
below the intrusion (to satisfy con-tinuity) occur at every cycle. 

Furthermore, as each cycle overflows its predecessors, a particular pattern of 
motion is gradually imposed on the entire cavity (including the core which at  this 
stage is still isothermal). This pattern is one of alternating flow direction with height. 
Thus, the low-frequency, temporal periodicity of the intrusion, induces a secondary, 
spatial periodicity in the vertical structure. 

The effect of the whole cavity mode is most apparent on the heat flux. This was 
shown by SPS by plotting the Nusselt number variation at  the hot and cold walls and 
at  the vertical centreline- as a function of time. These 

and 

are defined as 

(24) 

where K is the thermal conductivity, C ,  is the specific heat a t  constant pressure, and 
the overbar indicates an average over the whole cavity. Figure 7 shows a similar plot 
derived from the present simulation results. The differences are immediately 
apparent. First, the effect of the two boundary-layer instabilities is superimposed on 
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0 

FIQURE 7. Nusselt number at the hot wall, cold wall and the vertical centreline as 
a function of time. 

the low-frequency oscillation driven by the whole cavity mode at the centre of the 
cavity. The deviations in Nusselt number that these instabilities produce is of the 
order of the steady-state value. The effect, however, is relatively shortlived. This is 
not unexpected, as the frequency is greater than the Brunt-Vliisaila frequency of the 
density-stratified intrusions, and so is rapidly damped. It also shows up in the wall 
Nusselt numbers, although to a much smaller degree. Second, the damping of the 
low-frequency oscillation is less than in the SPS result. This is not unexpected in 
the light of the lower numerical diffusivity of the present scheme. Overall, however, 
the large-scale heat transfer characteristics are very similar. 

5.5. Hydraulic jump 
Using the simulation results it is now possible to better describe the postulated 
‘hydraulic jump’. Indeed, it is not a hydraulic jump, but rather a complex 
recirculation zone that for a short period of time has a similar appearance. Again, the 
description is given with respect to the warm intrusion. In figures 5(a)  and 5(c )  this 
flow feature takes the form of a small separation zone. Possible reasons for the 
formation of the separation zone are presented in SPS. It is only in figure 5 ( e ) ,  when 
the intrusion is slowing down owing to the commencement of the return flow, that 
the zone gives some appearance of a hydraulic jump. This culminates in figure 5 ( g ) ,  
where the zone has grown considerably in height and is the apparent centre of a very 
intense vortical flow. 

Figures 8(a ) -8 (d )  are enlargements of the top right-hand corner of the cavity, 
Figure 8(a)  is for the time span t = 120-125 s. It shows that the flow feature in 
question is simply the result of the interaction of the return flow from the whole 
cavity wave (moving to the right) and the flow being discharged from the boundary 
layer (moving to the left). The return flow is forcing the main stream of the boundary 
discharge back towards the vertical boundary, and at the same time is being entrained 
into it. It is the entrainment that causes the appearance of the recirculation zone. As 
this happens, the boundary discharge is forced to flow ever more steeply. Between 
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FIGVRE 8. Pathlines in the upper right-hand corner of the cavity. The time intervals are (a) 
12Cb125s; (a) 125-130s; (c) 130-135s; ( d )  135-140s. Dots on pathline plots are position of 
‘particle’ at beginning of time span. 

t = 125-130 s in figure 5 ( b ) ,  the forcing back of the resulting recirculation zone is 
evident, as is the steepening of the discharge. The return flow has also reversed itself 
during this time span indicating that the whole cavity wave is now moving with the 
intrusion. The result of this is shown in figure 5 ( c ) ,  for the time span t = 130-135 s. 
The boundary discharge is now free to flow relatively unimpeded as it had 
previously. The simple separation zone is again established at approximately z / h  = 
0.8 on the cavity lid. A secondary separation zone is also present immediately 
adjacent to the recirculation at  z /h  = 0.94. The recirculation zone is now effectively 
cut off from the boundary flow and it proceeds to move away and decay, as evident 
5 s later in figure 5 ( d ) .  A similar series of events is repeated each time the whole 
cavity oscillation produces a flow in the opposite direction to the intrusion flow. 
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6. Conclusions 
The results presented show that both long-period and short-period oscillations do 

exist during the early stages of transient flow in a side-heated cavity. The long- 
period, whole cavity oscillations are a result of the horizontal pressure gradients 
established by the tilting of the intrusion isotherms. The short-period oscillations 
arise owing to the amplification of two distinct instabilities in each of the thermal 
boundary layers. Each of the instabilities within a boundary layer has a different 
origin. The first is a result of the ‘leading-edge’ effect arising from the initial heating 
(cooling) of a boundary of finite length. Its evolution is well described by analogy to 
heating of a vertical plate. The second is a result of the disturbance to the boundary 
layer caused by the impact of the intruding flow from the opposite boundary. This 
instability grows in an identical way to the ‘leading-edge’ effect but attains a much 
larger amplitude. Both the amplitude and the frequency of the short-period 
oscillations are in good agreement with the measurements of Ivey (1984). 

Both sets of short-period oscillations are advected into the intrusions, where they 
exert a marked influence on the heat flux across a vertical section of the cavity. This 
effect, however, is superimposed onto the larger contribution made by the whole 
cavity oscillation and is relatively short lived. 

The whole cavity oscillations are a major component of the transient flow. Apart 
from the direct influence they exert on the intrusions within which they propagate, 
and the result this in turn has on the heat flux, they also determine the nature of the 
flow in the unstratified core of the cavity. By driving a system of essentially 
horizontal flows and counterflows, these oscillations impose a secondary, spatial 
wave form on the vertical structure. 

Finally, the contention of a hydraulic jump contribution to the oscillations 
appears to be without foundation. What has been attributed to being a hydraulic 
jump in other numerical solutions and laboratory experiments is in fact shown to be 
no more than a complex recirculating zone arising from the interaction of the 
intrusions and the return flows. 
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Geosciences, Office of Basic Energy Sciences, Department of Energy, USA through 
contracts No. DOE-DE-FG03-84ER 13240 and DOE-DE-FG03-87-ER 137.57. The 
contribution of C. Y. Perng to the code development and the comments of my 
colleagues J. R. Koseff, R. L. Street and S. G. Monismith to an earlier draft are 
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